The AdobeIndoorNav Dataset: Towards Deep Reinforcement Learning based Real-world Indoor Robot Visual Navigation
نویسندگان
چکیده
Deep reinforcement learning (DRL) demonstrates its potential in learning a model-free navigation policy for robot visual navigation. However, the data-demanding algorithm relies on a large number of navigation trajectories in training. Existing datasets supporting training such robot navigation algorithms consist of either 3D synthetic scenes or reconstructed scenes. Synthetic data suffers from domain gap to the real-world scenes while visual inputs rendered from 3D reconstructed scenes have undesired holes and artifacts. In this paper, we present a new dataset collected in real-world to facilitate the research in DRL based visual navigation. Our dataset includes 3D reconstruction for real-world scenes as well as densely captured real 2D images from the scenes. It provides highquality visual inputs with real-world scene complexity to the robot at dense grid locations. We further study and benchmark one recent DRL based navigation algorithm [1] and present our attempts and thoughts on improving its generalizability to unseen test targets in the scenes.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملLook Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation
Existing research studies on vision and language grounding for robot navigation focus on improving model-free deep reinforcement learning (DRL) models in synthetic environments. However, model-free DRL models do not consider the dynamics in the real-world environments, and they often fail to generalize to new scenes. In this paper, we take a radical approach to bridge the gap between synthetic ...
متن کاملSelf-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to navigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn ...
متن کاملCADRL: Real Single-Image Flight Without a Single Real Image
Deep reinforcement learning has emerged as a promising and powerful technique for automatically acquiring control policies that can process raw sensory inputs, such as images, and perform complex behaviors. However, extending deep RL to real-world robotic tasks has proven challenging, particularly in safety-critical domains such as autonomous flight, where a trial-and-error learning process is ...
متن کاملCAD2RL: Real Single-Image Flight Without a Single Real Image
Deep reinforcement learning has emerged as a promising and powerful technique for automatically acquiring control policies that can process raw sensory inputs, such as images, and perform complex behaviors. However, extending deep RL to real-world robotic tasks has proven challenging, particularly in safety-critical domains such as autonomous flight, where a trial-and-error learning process is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.08824 شماره
صفحات -
تاریخ انتشار 2018